Enervent HP units
VENTILATION UNITS WITH INTEGRATED HEAT PUMPS
Fresh, warm & cool

The Enervent ventilation units with integrated extract-air-source heat pumps enable supply and extract air ventilation, heating and cooling by ventilation, dehumidification, humidification and excellent energy efficiency with two separate systems for heat recovery.

An easy solution

An ventilation unit with a built-in heat pump is an easy-to-use and diversified solution for providing an indoor climate of the highest quality.

Features of the solution:
• Fresh and clean indoor air
• Heating and cooling, using an extract-air-source heat pump
• No indoor units: the air is evenly distributed via the ventilation ducts
• No outdoor units: Enables installation in areas with tight restrictions set on exteriors.
• An intelligent control system with quick functions
• Two separate systems for heat recovery
• The unit handles part of the heating requirement
• Well suited to be used along with all kinds of heating systems
• Two separate devices replaced with a single integrated unit
• An integrated unit saves space
• No cooling installation work on the work site

More than just heating and cooling

The Enervent ventilation solutions can be used to control the indoor climate, according to the absolute humidity level of the indoor air.

In spaces where maintaining the humidity level is essential, the ventilation unit can keep humidity at the desired level (g/kg). Thanks to the heat pump technology of the devices, humidity can be removed from the outdoor air before blowing the air into the building. The heat pump cools the air in order to remove humidity from the air.

To keep the supply air temperature at a comfortable level, the air is heated to the desired temperature before blowing it into the building. An external humidifier can be controlled via the Enervent ventilation system.
Integrated heat pumps

The Enervent HP units have an integrated extract-air-source heat pump. In their energy-efficiency, these solutions are state-of-the-art products. The HP units have two separate systems for heat recovery: first, the heat is recovered in the heat pump and then, in the rotating heat exchanger.

The annual efficiency of heat recovery for the ventilation system can be as high as over 90%. When adding the coefficient of performance (COP = 3 - 3.5) of the heat pump, the unit is extremely energy-efficient.

Example: The Pelican HP unit increases the temperature to +21 degrees by using about 1.2 kW of energy, when the outside temperature is -25°C. It would normally take about 4 KW of energy to reach the same temperature increase using a ventilation unit, equipped with a plate heat exchanger of low efficiency, and an electric after heating coil. The HP unit thus has over three times higher energy efficiency than a traditional plate heat exchanger unit.

Cooling, heating and dehumidification with one unit! That’s an installers dream!
Superior energy efficiency

The chart below shows examples of supply air temperature with HP units and compares exhaust air temperature by heat recovery method. The colder the exhaust air is, the energy efficient the unit is.

The graph displays temperatures of the supply air blown into and the exhaust air blown out of the house, during a specific outdoor temperature. The outdoor temperature is shown on the horizontal axis and the reached temperature on the vertical axis. The top line describes the temperature of the air blown inside with an HP series unit in the house. The three lower lines describe the temperature of the air released from the house, using different heat recovery methods. The colder the air blown outside, the more energy efficient the unit.

Duct system for heating and cooling

Heating and cooling with air places demands on the duct system and the terminal devices in order to avoid temperature loss in the duct system and for the system to work properly.

Heating

Heating and cooling with air places demands on the insulation of the duct system. Ventilation systems require thermal insulation in order to restrict and control heat loss. For financial and environmental reasons, it is important you reduce unnecessary heat loss in ducts. Ventilation ducts transport either warm or cold air. This, together with the temperature and moisture content of the surrounding air and in the duct, will influence your choice of insulation solution.

Cooling

Ducts that also transport cool air need a good thermal insulation solution. The insulation maintains the lower temperature inside the duct by insulating it from the warmer ambient air temperature. If the cool air in the duct is heated by the surrounding air, the HVAC system functions less effectively and you will need more energy to maintain the duct’s correct temperature. If the ducts are properly insulated, the whole ventilation system will work as designed and you need less equipment calibration.

Condensation

With high humidity, the air can easily condense on the outer surface of ducts. Condensation also occurs inside the duct if the situation is reversed. Huge problems occur when condensation builds up on the outside of ducts containing material with a lower temperature than the ambient air temperature.

To prevent condensation apply insulation of the correct thickness to keep the insulation surface temperature higher than the ambient air temperature. Also use an effective water vapour barrier to prevent moisture permeating the insulation.
Ease of use with intelligent control

Enervent eAir is an investment into everyday luxury – the leading solution for easy and comfortable high-quality ventilation. Enervent always gives you easily controlled ventilation - also when the unit includes heat pump and dehumidification.

Intelligent control
Operation modes cover all the ventilation needs in Home mode. The supply and extract air flows can be controlled individually in all the operation modes. Available modes are Home, Away, Boost, Overpressure, Silent and Eco. eAir also include Office mode.

Most features in the control are totally automatic. The unit adjusts itself according to prevailing circumstances. An example of this is automatic humidity boosting when the humidity level inside exceed the set point.

The eAir control is also a master of energy efficiency by energy optimizing. The control chooses when to use what feature in order to consume as little energy as possible. The heat pump is i.e. not activated if the supply air set temperature is reached with the rotating heat exchanger only.

Setup Wizard – installation as if by magic
A Set-up Wizard application makes installation and set-up quick and easy. The touchscreen guides the contractor through every installation phase, follows through the process and checks that the installation is successful.

Remote control
You can control the ventilation remotely by a web-based eAir interface.

Measurement data
Measurement data trend graphs can be viewed on the eAir panel on a weekly or daily basis.

House under control
It is possible to install two separate eAir panels, for example on two floors.

Advance notifications
The control panel provides an advance notice of the next programmed event.

Bus control
Bus control is created either via Ethernet or Modbus RTU bus.
Pelican HP

Pelican HP is available for the Pelican ventilation units for buildings of 60–160 m², including, for example, single-family houses and offices. Pelican is made of sheet metal painted white, with duct outlets upwards. A suitable ventilation solution must always be based on the project-specific dimensioning and requirements, but also on the personal preferences of the residents.
Control system

eAir is the most versatile Enervent control system. eAir can control all heating and cooling solutions and external components, such as humidifiers.

Control is based on use situations, such as Home, Away, Boost and Eco. Situation-based control covers all home requirements in various daily situations.

A free Internet user interface, eAir web, is included with all deliveries. You can control your ventilation from any place in the world.

The heating efficiency achieved with the HP units is calculated as follows:

Heating efficiency = \(\rho_i \times \text{cpi} \times \text{qv} \times \Delta T \)

\[\text{Heating efficiency} = \rho_i \times \text{cpi} \times \text{qv} \times \Delta T \]

\[= 1.2 \text{ kg/m}^3 \times 1 \text{ kJ/(kgK)} \times 120 \text{ l/s} \times 9^\circ \text{C} = 1,296 \text{ W} \]

- \(\rho_i \): air density, \(1.2 \text{ kg/m}^3 \)
- \(\text{cpi} \): specific heat capacity of air, \(1.0 \text{ kJ/(kgK)} \)
- \(\text{qv} \): air flow, l/s
- \(\Delta T \): excess heat, °C (in addition to room temperature)

Characteristic curves

The characteristic curve for Pelican HP supply and extract air with M5 filters

General Technical Specifications

<table>
<thead>
<tr>
<th>Pelican HP</th>
<th>GENERAL TECHNICAL SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum air flow (filters M5)</td>
<td>580 m³/h</td>
</tr>
<tr>
<td>Minimum air flow (filters M5)</td>
<td>374 m³/h</td>
</tr>
<tr>
<td>Heating of the entire apartment (1-2 l/s/m²)</td>
<td>80-160 m²</td>
</tr>
<tr>
<td>Cooling of the entire apartment (1-3 l/s/m²)</td>
<td>60-160 m²</td>
</tr>
<tr>
<td>Fans (supply and exhaust)</td>
<td>170 W</td>
</tr>
<tr>
<td>Duct diameter</td>
<td>Ø 200 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>165 kg</td>
</tr>
<tr>
<td>Standard filters</td>
<td>F7/M5</td>
</tr>
<tr>
<td>Alternative filters</td>
<td>F7/F7</td>
</tr>
<tr>
<td>Overheating protector</td>
<td>Yes</td>
</tr>
<tr>
<td>Sound in the supply air duct with fan speeds 20, 40, 60, 80, 100 %</td>
<td>- , - , 49, 52, 52</td>
</tr>
<tr>
<td>Voltage</td>
<td>230 V~/50 Hz</td>
</tr>
<tr>
<td>Fuse</td>
<td>16 A slow</td>
</tr>
<tr>
<td>Heat pump refrigerant</td>
<td>R410A, 1.5 kg</td>
</tr>
<tr>
<td>Compressor nominal output</td>
<td>0.98 kW</td>
</tr>
<tr>
<td>Heat pump COP according to EN14511</td>
<td>3.3</td>
</tr>
<tr>
<td>Condensation-water connection</td>
<td>2x, Ø 32 mm</td>
</tr>
<tr>
<td>Compressor control</td>
<td>30–100 %</td>
</tr>
</tbody>
</table>
Pegasos HP

HP is available for the Pegasos ventilation units for buildings of 130–390 m², including, for example, large single-family houses and offices. Pegasos is made of sheet metal painted white, with duct outlets upwards. A suitable ventilation solution must always be based on the project-specific dimensioning and requirements, but also on the personal preferences of the residents.
The heating efficiency achieved with the HP units is calculated as follows:

\[
\text{Heating efficiency} = \rho_i \times C_p \times q_v \times \Delta T
\]

\[
= 1.2 \text{ kg/m}^3 \times 1 \text{ kJ/(kgK)} \times 250 \text{ l/s} \times 9^\circ\text{C} = 2,700 \text{ W}
\]

- \(\rho_i\): air density, 1.2 kg/m\(^3\)
- \(C_p\): specific heat capacity of air, 1.0 kJ/(kgK)
- \(q_v\): air flow, l/s
- \(\Delta T\): excess heat, °C (in addition to room temperature)

Control system

eAir is the most versatile Enervent control system. eAir can control all heating and cooling solutions and external components, such as humidifiers.

Control is based on use situations, such as Home, Away, Boost and Eco. Situation-based control covers all home requirements in various daily situations.

A free Internet user interface, eAir web, is included with all deliveries. You can control your ventilation from any place in the world.
Pallas HP

HP is available for the Pallas ventilation units for buildings of 300–700 m², including, for example, offices, cafeterias, schools, industrial facilities and apartment buildings. Pallas is made of sheet metal, with duct outlets upwards. A suitable ventilation solution must always be based on the project-specific dimensioning and requirements, but also on the personal preferences of the residents.
General Technical Specifications

PALLAS HP

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum air flow (filters F7)</td>
<td>2,880 m³/h</td>
</tr>
<tr>
<td>Minimum air flow (filters F7)</td>
<td>720 m³/h</td>
</tr>
<tr>
<td>Heating of the entire apartment (1–2 l/s/m²)</td>
<td>300–700 m²</td>
</tr>
<tr>
<td>Cooling of the entire apartment (1–3 l/s/m²)</td>
<td>200–700 m²</td>
</tr>
<tr>
<td>Fans: supply and exhaust</td>
<td>1,000 W</td>
</tr>
<tr>
<td>Duct diameter</td>
<td>300 x 600 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>450–500 kg</td>
</tr>
<tr>
<td>Standard filters</td>
<td>F7/M5</td>
</tr>
<tr>
<td>Alternative filters</td>
<td>F7/F7</td>
</tr>
<tr>
<td>Overheating protector</td>
<td>Yes</td>
</tr>
<tr>
<td>Sound level absorption (LpA)</td>
<td>56.6 dB(A)</td>
</tr>
<tr>
<td>Voltage</td>
<td>400 V 3~, 50 Hz</td>
</tr>
<tr>
<td>Fuse</td>
<td>3x20 A slow</td>
</tr>
<tr>
<td>Heat pump refrigerant</td>
<td>R410A, 5.2 kg</td>
</tr>
<tr>
<td>Compressor nominal output</td>
<td>3.7 kW</td>
</tr>
<tr>
<td>Heat pump COP according to EN14511</td>
<td>@ outside temperature +2°C and air flow 1980/2052 m³/h 3.2</td>
</tr>
<tr>
<td>Condensation-water connection</td>
<td>2 pcs Ø 32 mm</td>
</tr>
<tr>
<td>Compressor control</td>
<td>10–100 %</td>
</tr>
</tbody>
</table>

The heating efficiency achieved with the HP units is calculated as follows:

Heating efficiency = \(\rho_i \times C_{pi} \times q_{v} \times \Delta T \)

\(\rho_i \) air density, 1.2 kg/m³
\(C_{pi} \) specific heat capacity of air, 1.0 kJ/(kgK)
\(q_v \) air flow, l/s
\(\Delta T \) excess heat, °C (in addition to room temperature)

\[1.2 \text{ kg/m}^3 \times 1 \text{ kJ/(kgK)} \times 600 \text{ l/s} \times 9^\circ \text{C} = 6,480 \text{ W} \]

Control system

eAir

eAir is the most versatile Enervent control system. eAir can control all heating and cooling solutions and external components, such as humidifiers.

Control is based on use situations, such as Home, Away, Boost and Eco. Situation-based control covers all home requirements in various daily situations.

A free Internet user interface, eAir web, is included with all deliveries. You can control your ventilation from any place in the world.